منابع مشابه
Fractional Heisenberg Equation
Fractional derivative can be defined as a fractional power of derivative. The commutator (i/h̄)[H, . ], which is used in the Heisenberg equation, is a derivation on a set of observables. A derivation is a map that satisfies the Leibnitz rule. In this paper, we consider a fractional derivative on a set of quantum observables as a fractional power of the commutator (i/h̄)[H, . ]. As a result, we ob...
متن کاملUnified Fractional Kinetic Equation and a Fractional Diffusion Equation
Abstract. In earlier papers Saxena et al. (2002, 2003) derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which extended the work of Haubold and Mathai (2000). The object of the present paper is to investigate the solution of a unified form of fractional kinetic equation in which the free term contains any integrable function f(t),...
متن کاملHeisenberg Uncertainty Relation in Quantum Liouville Equation
We consider the quantum Liouville equation and give a characterization of the solutions which satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a particular solution of the quantum Liouville equation: the Wigner transform f x,v,t of a generic solution ψ x;t of the Schrödinger equation. We give a representation of ψ x, t by the Hermite functions. We show ...
متن کاملFractional Langevin equation.
We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffu...
متن کاملFractional-calculus diffusion equation
BACKGROUND Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. RESULTS The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2008
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2008.01.037